Skip to content

The effect of 12C +12C rate uncertainties on the evolution and nucleosynthesis of massive stars

Authors

Bennett, M. E.;
Rockefeller, G.;
RefereedArticle

Abstract

Over the last 40 years, the 12C +12C fusion reaction has been the subject of considerable experimental efforts to constrain uncertainties at temperatures relevant for stellar nucleosynthesis. Recent studies have indicated that the reaction rate may be higher than that currently used in stellar models. In order to investigate the effect of an enhanced carbon-burning rate on massive star structure and nucleosynthesis, new stellar evolution models and their yields are presented exploring the impact of three different 12C +12C reaction rates. Non-rotating stellar models considering five different initial masses, 15, 20, 25, 32 and 60 M, at solar metallicity, were generated using the Geneva Stellar Evolution Code (GENEC) and were later post-processed with the NuGrid Multi-zone Post-Processing Network tool (MPPNP). A dynamic nuclear reaction network of ∼1100 isotopes was used to track the s-process nucleosynthesis. An enhanced 12C +12C reaction rate causes core carbon burning to be ignited more promptly and at lower temperature. This reduces the neutrino losses, which increases the core carbon-burning lifetime. An increased carbon-burning rate also increases the upper initial mass limit for which a star exhibits a convective carbon core (rather than a radiative one). Carbon-shell burning is also affected, with fewer convective-shell episodes and convection zones that tend to be larger in mass. Consequently, the chance of an overlap between the ashes of carbon-core burning and the following carbon shell convection zones is increased, which can cause a portion of the ashes of carbon-core burning to be included in the carbon shell. Therefore, during the supernova explosion, the ejecta will be enriched by s-process nuclides synthesized from the carbon-core s-process. The yields were used to estimate the weak s-process component in order to compare with the Solar system abundance distribution. The enhanced rate models were found to produce a significant proportion of Kr, Sr, Y, Zr, Mo, Ru, Pd and Cd in the weak component, which is primarily the signature of the carbon-core s-process. Consequently, it is shown that the production of isotopes in the Kr-Sr region can be used to constrain the 12C +12C rate using the current branching ratio for α- and p-exit channels.

Details

© The SAO Astrophysics Data System

help[at]scixplorer.org

SciX is a project created by the Astrophysics Data System (ADS), which is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement 80NSSC21M0056.

Version: v0.26.0

*The material contained in this document is based upon work supported by a National Aeronautics and Space Administration (NASA) grant or cooperative agreement. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA.

RESOURCES

About SciXGive FeedbackSciX HelpSystem StatusCareers@SciXAccessibility Conformance ReportWeb Accessibility PolicyNASA Science Discovery Engine