Skip to content

SUSSING MERGER TREES: the influence of the halo finder

Authors

Avila, Santiago;
Pearce, Frazer R.;
RefereedArticle

Abstract

Merger tree codes are routinely used to follow the growth and merger of dark matter haloes in simulations of cosmic structure formation. Whereas in Srisawat et. al. we compared the trees built using a wide variety of such codes, here we study the influence of the underlying halo catalogue upon the resulting trees. We observe that the specifics of halo finding itself greatly influences the constructed merger trees. We find that the choices made to define the halo mass are of prime importance. For instance, amongst many potential options different finders select self-bound objects or spherical regions of defined overdensity, decide whether or not to include substructures within the mass returned and vary in their initial particle selection. The impact of these decisions is seen in tree length (the period of time a particularly halo can be traced back through the simulation), branching ratio (essentially the merger rate of subhaloes) and mass evolution. We therefore conclude that the choice of the underlying halo finder is more relevant to the process of building merger trees than the tree builder itself. We also report on some built-in features of specific merger tree codes that (sometimes) help to improve the quality of the merger trees produced.

Details

© The SAO Astrophysics Data System

help[at]scixplorer.org

SciX is a project created by the Astrophysics Data System (ADS), which is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement 80NSSC21M0056.

Version: v0.26.0

*The material contained in this document is based upon work supported by a National Aeronautics and Space Administration (NASA) grant or cooperative agreement. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA.

RESOURCES

About SciXGive FeedbackSciX HelpSystem StatusCareers@SciXAccessibility Conformance ReportWeb Accessibility PolicyNASA Science Discovery Engine