Skip to content

Modeling the Impact of Baryons on Subhalo Populations with Machine Learning

Authors

Nadler, Ethan O.;
RefereedArticle

Abstract

We identify subhalos in dark matter-only (DMO) zoom-in simulations that are likely to be disrupted due to baryonic effects by using a random forest classifier trained on two hydrodynamic simulations of Milky Way (MW)-mass host halos from the Latte suite of the Feedback in Realistic Environments (FIRE) project. We train our classifier using five properties of each disrupted and surviving subhalo: pericentric distance and scale factor at first pericentric passage after accretion and scale factor, virial mass, and maximum circular velocity at accretion. Our five-property classifier identifies disrupted subhalos in the FIRE simulations with an 85% out-of-bag classification score. We predict surviving subhalo populations in DMO simulations of the FIRE host halos, finding excellent agreement with the hydrodynamic results; in particular, our classifier outperforms DMO zoom-in simulations that include the gravitational potential of the central galactic disk in each hydrodynamic simulation, indicating that it captures both the dynamical effects of a central disk and additional baryonic physics. We also predict surviving subhalo populations for a suite of DMO zoom-in simulations of MW-mass host halos, finding that baryons impact each system consistently and that the predicted amount of subhalo disruption is larger than the host-to-host scatter among the subhalo populations. Although the small size and specific baryonic physics prescription of our training set limits the generality of our results, our work suggests that machine-learning classification algorithms trained on hydrodynamic zoom-in simulations can efficiently predict realistic subhalo populations.

Details

© The SAO Astrophysics Data System

help[at]scixplorer.org

SciX is a project created by the Astrophysics Data System (ADS), which is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement 80NSSC21M0056.

Version: v0.26.0

*The material contained in this document is based upon work supported by a National Aeronautics and Space Administration (NASA) grant or cooperative agreement. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA.

RESOURCES

About SciXGive FeedbackSciX HelpSystem StatusCareers@SciXAccessibility Conformance ReportWeb Accessibility PolicyNASA Science Discovery Engine