Skip to content

ALMA CO Observations of Supernova Remnant N63A in the Large Magellanic Cloud: Discovery of Dense Molecular Clouds Embedded within Shock-ionized and Photoionized Nebulae

Authors

Sano, H.;
Nagaya, T.;
RefereedArticle

Abstract

We carried out new 12CO(J = 1-0, 3-2) observations of a N63A supernova remnant (SNR) from the LMC using the Atacama Large Millimeter/submillimeter Array (ALMA) and Atacama Submillimeter Telescope Experiment. We find three giant molecular clouds toward the northeast, east, and near the center of the SNR. Using the ALMA data, we spatially resolved clumpy molecular clouds embedded within the optical nebulae in both the shock-ionized and photoionized lobes discovered by previous Hα and [S II] observations. The total mass of the molecular clouds is ∼800 M for the shock-ionized region and ∼1700 M for the photoionized region. Spatially resolved X-ray spectroscopy reveals that the absorbing column densities toward the molecular clouds are ∼(1.5-6.0) × 1021 cm-2, which are ∼1.5-15 times less than the averaged interstellar proton column densities for each region. This means that the X-rays are produced not only behind the molecular clouds, but also in front of them. We conclude that the dense molecular clouds have been completely engulfed by the shock waves, but have still survived erosion owing to their high density and short interacting time. The X-ray spectrum toward the gas clumps is well explained by an absorbed power-law model or a high-temperature plasma model, in addition to thermal plasma components, implying that the shock-cloud interaction is efficiently working for both cases through the shock ionization and magnetic field amplification. If the hadronic gamma-ray is dominant in the GeV band, the total energy of the cosmic-ray protons is calculated to be ∼(0.3-1.4) × 1049 erg, with an estimated interstellar proton density of ∼190 ± 90 cm-3, containing both the shock-ionized gas and neutral atomic hydrogen.

Details

© The SAO Astrophysics Data System

help[at]scixplorer.org

SciX is a project created by the Astrophysics Data System (ADS), which is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement 80NSSC21M0056.

Version: v0.26.0

*The material contained in this document is based upon work supported by a National Aeronautics and Space Administration (NASA) grant or cooperative agreement. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA.

RESOURCES

About SciXGive FeedbackSciX HelpSystem StatusCareers@SciXAccessibility Conformance ReportWeb Accessibility PolicyNASA Science Discovery Engine