Skip to content

Wavelengths and Energy Levels of the Upper Levels of Singly Ionized Nickel (Ni II) from 3d 8(3 F)5f to 3d 8(3 F)9s

Authors

Clear, Christian P.;
RefereedArticle

Abstract

Using high-resolution spectra of Ni II recorded using Fourier transform (FT) spectroscopy of continuous, nickel-helium hollow cathode discharge sources in the region 143-5555 nm (1800-70,000 cm-1, the analysis of 1016 Ni II lines confirmed and optimized 206 previously reported energy levels of the (3 F) parent term, from 3d 8(3 F)5f to 3d 8(3 F)9s, lying between 122,060 and 138,563 cm-1. The uncertainties of these levels have been improved by at least an order of magnitude compared with their previously reported values. With the increased resolution and spectral range of the FT measurements, compared to previously published grating spectra, we were able to extend our analysis to identify and establish 33 new energy levels of Ni II, which are reported here for the first time. Eigenvector compositions of all revised and newly established energy levels were calculated using the orthogonal operator method. In addition, an improved ionization energy of 146,541.35 ± 0.15 cm-1 for Ni II, using highly excited levels of the 3d 8(3 F)5g, 3d 8(3 F)6g, and 3d 8(3 F)6h configurations, has been derived.

Details

© The SAO Astrophysics Data System

help[at]scixplorer.org

SciX is a project created by the Astrophysics Data System (ADS), which is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement 80NSSC21M0056.

Version: v0.26.0

*The material contained in this document is based upon work supported by a National Aeronautics and Space Administration (NASA) grant or cooperative agreement. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA.

RESOURCES

About SciXGive FeedbackSciX HelpSystem StatusCareers@SciXAccessibility Conformance ReportWeb Accessibility PolicyNASA Science Discovery Engine